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Section 14.5 : Lagrange Multipliers

In the previous section we optimized (i.e. found the absolute extrema) a function on a region
that contained its boundary. Finding potential optimal points in the interior of the region isn’t
too bad in general, all that we needed to do was find the critical points and plug them into the
function. However, as we saw in the examples finding potential optimal points on the
boundary was often a fairly long and messy process.

In this section we are going to take a look at another way of optimizing a function subject to
given constraint(s). The constraint(s) may be the equation(s) that describe the boundary of a
region although in this section we won’t concentrate on those types of problems since this
method just requires a general constraint and doesn’t really care where the constraint came
from.

So, let’s get things set up. We want to optimize (i.e. find the minimum and maximum value of)
a function, , subject to the constraint . Again, the constraint may be
the equation that describes the boundary of a region or it may not be. The process is actually
fairly simple, although the work can still be a little overwhelming at times.

Method of Lagrange Multipliers

1. Solve the following system of equations.

2. Plug in all solutions, , from the first step into  and identify the
minimum and maximum values, provided they exist and  at the point.

The constant, , is called the Lagrange Multiplier.

Notice that the system of equations from the method actually has four equations, we just
wrote the system in a simpler form. To see this let’s take the first equation and put in the

f (x, y, z) g (x, y, z) = k

∇f (x, y, z) = λ ∇g (x, y, z)
g (x, y, z) = k

(x, y, z) f (x, y, z)
∇g ≠ →0

λ
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definition of the gradient vector to see what we get.

In order for these two vectors to be equal the individual components must also be equal. So,
we actually have three equations here.

These three equations along with the constraint, , give four equations with four
unknowns , , , and .

Note as well that if we only have functions of two variables then we won’t have the third
component of the gradient and so will only have three equations in three unknowns , , and

.

As a final note we also need to be careful with the fact that in some cases minimums and
maximums won’t exist even though the method will seem to imply that they do. In every
problem we’ll need to make sure that minimums and maximums will exist before we start the
problem.

To see a physical justification for the formulas above let’s consider the minimum and
maximum value of  subject to the constraint . In the practice
problems for this section (problem #2 to be exact) we will show that minimum value of 
is -2 which occurs at  and the maximum value of  is 8.125 which occurs at

 and .

Here is a sketch of the constraint as well as  for various values of .

⟨fx, fy, fz⟩ = λ ⟨gx, gy, gz⟩ = ⟨λgx,λgy,λgz⟩

fx = λgx fy = λgy fz = λgz

g (x, y, z) = c

x y z λ

x y

λ

f (x, y) = 8x2 − 2y x2 + y2 = 1
f (x, y)

(0, 1) f (x, y)

(− ,− )3√7
8

1
8 ( , − )3√7

8
1
8

f (x. y) = k k
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First remember that solutions to the system must be somewhere on the graph of the
constraint,  in this case. Because we are looking for the minimum/maximum
value of  this, in turn, means that the location of the minimum/maximum value of

, i.e. the point , must occur where the graph of  intersects the graph
of the constraint when  is either the minimum or maximum value of .

Now, we can see that the graph of , i.e. the graph of the minimum value of
, just touches the graph of the constraint at . In fact, the two graphs at that point

are tangent.

If the two graphs are tangent at that point then their normal vectors must be parallel, i.e. the
two normal vectors must be scalar multiples of each other. Mathematically, this means,

for some scalar  and this is exactly the first equation in the system we need to solve in the
method.

Note as well that if  is smaller than the minimum value of  the graph of 
doesn’t intersect the graph of the constraint and so it is not possible for the function to take
that value of  at a point that will satisfy the constraint.

x2 + y2 = 1
f (x, y)

f (x, y) (x, y) f (x, y) = k

k f (x, y)

f (x, y) = −2
f (x, y) (0, 1)

∇f (x, y, z) = λ ∇g (x, y, z)

λ

k f (x, y) f (x, y) = k

k
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Likewise, if  is larger than the minimum value of  the graph of  will
intersect the graph of the constraint but the two graphs are not tangent at the intersection
point(s). This means that the method will not find those intersection points as we solve the
system of equations.

Next, the graph below shows a different set of values of . In this case, the values of  include
the maximum value of  as well as a few values on either side of the maximum value.

Again, we can see that the graph of  will just touch the graph of the
constraint at two points. This is a good thing as we know the solution does say that it should
occur at two points. Also note that at those points again the graph of and the
constraint are tangent and so, just as with the minimum values, the normal vectors must be
parallel at these points.

Likewise, for value of  greater than 8.125 the graph of  does not intersect the
graph of the constraint and so it will not be possible for  to take on those larger values
at points that are on the constraint.

Also, for values of  less than 8.125 the graph of  does intersect the graph of the
constraint but will not be tangent at the intersection points and so again the method will not
produce these intersection points as we solve the system of equations.

k f (x, y) f (x, y) = k

k k

f (x, y)

f (x, y) = 8.125

f (x, y) = 8.125

k f (x, y) = k

f (x, y)

k f (x, y) = k
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So, with these graphs we’ve seen that the minimum/maximum values of  will come
where the graph of  and the graph of the constraint are tangent and so their
normal vectors are parallel. Also, because the point must occur on the constraint itself. In
other words, the system of equations we need to solve to determine the minimum/maximum
value of  are exactly those given in the above when we introduced the method.

Note that the physical justification above was done for a two dimensional system but the same
justification can be done in higher dimensions. The difference is that in higher dimensions we
won’t be working with curves. For example, in three dimensions we would be working with
surfaces. However, the same ideas will still hold. At the points that give minimum and
maximum value(s) of the surfaces would be parallel and so the normal vectors would also be
parallel.

f (x, y)
f (x, y) = k

f (x, y)

19/09/2024, 10:11 Calculus III - Lagrange Multipliers

https://tutorial.math.lamar.edu/classes/calciii/lagrangemultipliers.aspx 5/8



Let’s work a couple of examples.

Example 1 Find the dimensions of the box with largest volume if the total surface area is 64

cm2.

Show Solution 

Notice that we never actually found values for  in the above example. This is fairly standard
for these kinds of problems. The value of  isn’t really important to determining if the point is a
maximum or a minimum so often we will not bother with finding a value for it. On occasion we
will need its value to help solve the system, but even in those cases we won’t use it past
finding the point.

Example 2 Find the maximum and minimum of  subject to the constraint
.

Show Solution 

In the first two examples we’ve excluded  either for physical reasons or because it
wouldn’t solve one or more of the equations. Do not always expect this to happen. Sometimes
we will be able to automatically exclude a value of  and sometimes we won’t.

Let’s take a look at another example.

Example 3 Find the maximum and minimum values of  subject to the
constraint . Assume that .

Show Solution 

Before we proceed we need to address a quick issue that the last example illustrates about
the method of Lagrange Multipliers. We found the absolute minimum and maximum to the
function. However, what we did not find is all the locations for the absolute minimum. For
example, assuming , consider the following sets of points.

Every point in this set of points will satisfy the constraint from the problem and in every case
the function will evaluate to zero and so also give the absolute minimum.

λ

λ

f (x, y) = 5x− 3y
x2 + y2 = 136

λ = 0

λ

f (x, y, z) = xyz

x+ y+ z = 1 x, y, z ≥ 0

x, y, z ≥ 0

(0, y, z) where y+ z = 1

(x, 0, z) where x+ z = 1
(x, y, 0) where x+ y = 1
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So, what is going on? Recall from the previous section that we had to check both the critical
points and the boundaries to make sure we had the absolute extrema. The same was true in
Calculus I. We had to check both critical points and end points of the interval to make sure we
had the absolute extrema.

It turns out that we really need to do the same thing here if we want to know that we’ve found
all the locations of the absolute extrema. The method of Lagrange multipliers will find the
absolute extrema, it just might not find all the locations of them as the method does not take
the end points of variables ranges into account (note that we might luck into some of these
points but we can’t guarantee that).

So, after going through the Lagrange Multiplier method we should then ask what happens at
the end points of our variable ranges. For the example that means looking at what happens if

, , , , , and . In the first three cases we get the points
listed above that do happen to also give the absolute minimum. For the later three cases we
can see that if one of the variables are 1 the other two must be zero (to meet the constraint)
and those were actually found in the example. Sometimes that will happen and sometimes it
won’t.

In the case of this example the end points of each of the variable ranges gave absolute
extrema but there is no reason to expect that to happen every time. In Example 2 above, for
example, the end points of the ranges for the variables do not give absolute extrema (we’ll let
you verify this).

The moral of this is that if we want to know that we have every location of the absolute
extrema for a particular problem we should also check the end points of any variable ranges
that we might have. If all we are interested in is the value of the absolute extrema then there is
no reason to do this.

Okay, it’s time to move on to a slightly different topic. To this point we’ve only looked at
constraints that were equations. We can also have constraints that are inequalities. The
process for these types of problems is nearly identical to what we’ve been doing in this
section to this point. The main difference between the two types of problems is that we will
also need to find all the critical points that satisfy the inequality in the constraint and check
these in the function when we check the values we found using Lagrange Multipliers.

Let’s work an example to see how these kinds of problems work.

Example 4 Find the maximum and minimum values of  on the disk
.

x = 0 y = 0 z = 0 x = 1 y = 1 z = 1

f (x, y) = 4x2 + 10y2

x2 + y2 ≤ 4
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Show Solution 

The final topic that we need to discuss in this section is what to do if we have more than one
constraint. We will look only at two constraints, but we can naturally extend the work here to
more than two constraints.

We want to optimize  subject to the constraints  and .
The system that we need to solve in this case is,

So, in this case we get two Lagrange Multipliers. Also, note that the first equation really is
three equations as we saw in the previous examples. Let’s see an example of this kind of
optimization problem.

Example 5 Find the maximum and minimum of  subject to the
constraints  and .

Show Solution 

f (x, y, z) g (x, y, z) = c h (x, y, z) = k

∇f (x, y, z) = λ∇g (x, y, z) + μ∇h (x, y, z)
g (x, y, z) = c

h (x, y, z) = k

f (x, y, z) = 4y− 2z
2x− y− z = 2 x2 + y2 = 1
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